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Polynomial approximations are obtained to analytic functions on circular and
elliptical contours by forming partial sums of order n of their expansions in
Taylor series and Chebyshev series of the second kind, respectively. It is proved
that the resulting approximations converge in the L 1 norm as n --+ CTJ, and that
they are near-best L 1 approximations within relative distances of the order of
log n. Practical implications of the results are discussed, and they are shown to
provide a theoretical basis for polynomial approximation methods for the
evaluation of indefinite integrals on contours.

1. rNTRODUCTlON

The problem of computing best polynomial approximations to functions
on regions or contours in the complex plane is difficult and, except in the case
of L 2 approximations, nonlinear. Although a simple and reliable algorithm
has now been found [1] for best LX) approximation, it inevitably involves an
iterative procedure. Linear projections, in contrast, may be computed
directly and yet sometimes provide approximations very near to best. It is
therefore important to study their properties.

In the case of the LX) norm it has already been proved that approximations
of degree n near-minimax within relative distances of the order oflog n may be
obtained on circular contours by forming the partial sum of the Taylor
series [2] and on elliptical contours by forming either the partial sum of the
Chebyshev series of the first kind [3] or the interpolating polynomial at
suitable Chebyshev nodes [4]. It is the purpose of the present paper to obtain
comparable results in the L 1 norm.

The L 1 norm is of theoretical interest because of its dual relationship with
L.c , and it is also of practical relevance if we wish to smooth out a given
function or approximate its integral. Polynomial approximations formed by
projections in L 1 have already been studied for the real interval [-1, 1] in [5],
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where it was established that the partial sum of the Chebyshev series of the
second kind is near-best in L l within a relative distance of the order of log n,
and in [6] where the same approximation was proved to be convergent in L l

as n --+ 00. We now generalize these two results to elliptical contours,
obtaining results for L l and Chebyshev polynomials of the second kind
closely analogous to those of [3] for Loo and Chebyshev polynomials of the
first kind. We also study the Taylor series projection on a circular contour
in L l , and prove results analogous to those given in [2] for the same projection
in Loo •

Finally we show that these new results provide a theoretical basis for
polynomial approximation methods for the evaluation of indefinite integrals
on contours.

2. PROJECTIONS ON A FUNCTION SPACE

Consider a contour T, which is taken to be either a circle Co of radius p > I
cedtered at the origin, or the ellipse ~0 with foci at ± 1 and semiaxes of lengths
t(p ± p-l), where p is fixed. The ellipse is defined only for p > 1 and collapses
to the real interval [-1, 1] as p approaches 1. Denote the interior of Tby l(T)
and the closure by leT).

The function space A(T) is defined to be the linear space of functions I
which are continuous on l(T) and analytic in leT), normed by the L l norm
onT

11/111 = t If(z)11 dz I·

Obviously this norm, which is measured over T only, is independent of values
oflin leT), and so attention is restricted to problems in which approximations
are only required on the contour.

The polynomial subspace lln is the space of complex algebraic polynomials
of degree not exceeding n, and clearly a best approximationln B exists in lln
to any givenlin A(T).

A mapping M: A(T) --+ lln and a corresponding approximation MI are
said to be near-best within a relative distance ft if they satisfy the inequality

III - Mill < (1 + ft) '11/:'- InB II·

In particular any projection P, which is defined to be a bounded linear
idempotent mapping, is always near-best within a relative distance II P II,
since it can easily be established (see [5]) that

III - Pili ~ (1 + II P II) '111 - InB II·
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The norm of P is defined here as

P sup
jeAlr)

Pil
fi

(I)

If we can show that II P II is "appropriately small," then Pfwill be very close
to a best approximation. For example, if P II does not exceed 9, then Pf is
within one decimal place of the accuracy of fnB. In the two examples in the
present paper, bounds for Ii P II are obtained which behave like log nand
only exceed 9 for extremely large values of n.

The mappings to which we shall restrict our attention are those projections
which are formed by taking the partial sum of an expansion off on l(T) in
polynomials orthogonal with respect to a weight function W on r. Such
polynomials {~iz)}, where ~k is of degree k, are defined by

Ir ~m(z) ~n(z) W(z) I dz = 0 for 111 oF n. (2)

In general we define the L p norm of a function fez) on a contour r to be

Before proceeding further, we establish an analog for the circular contour
Co: I z I = p of a standard result for L p norms on the real line.

LEMMA 2.1. If a sequence of continuous approximations converges to a
continuous function in the L'P norm on Co, then it will converge in the La norm
on Cofor any q < p.

Proof Suppose that continuous functions f and g are defined on Co,
and write

G(e) = I g(pei8)J.

Then, if lip + lip' = 1, Holder's inequality gives

f
217 [f217 ]I f 'P[f217 ]l f P'

o F(e) G(e) de ~ 0 IF(e)I'P de 0 I G(e)['P' de .

Since J dz I = p de, we deduce an analog of Holder's inequality
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By takingp = qlr for q > r,f(z) = [4>(z))" and g(z) = I, we deduce in the
usual way that

[I ]
l/r-l/q

4>(z)llr ~ ¢(z)llq ; dz I
Cp

and the lemma follows by considering a sequence of functions.

3. THE TAYLOR SERIES AND THE CIRCLE

It is easily verified (see [7]) that the orthogonality relationship (2) is satisfied
for the polynomials 4>k(Z) = Zk on the contour T = Cp with weight function
W(z) = I. Thus the Taylor series ofI is an orthogonal expansion on T, and
the mapping Sn ofIon the partial sum of degree n of the series is a projection.
We are now ready to prove the results we require.

THEOREM 3.1. {Sn/} converges tolin the L l norm on C.

Proof {SnfJ converges to I in the L 2 norm on Cp as a consequence of the
orthogonality of {Zk}. The result follows by Lemma 2.1.

THEOREM 3.2. II Sn III ~ Tn, where

Tn = ~ f"\ sin(n. + I)B Ide.
n 0 sm ()

Proof By applying Cauchy's integral formulas it can be shown (see [2])
that

I I sn+l - I
(Snf)(z) = -2 n+l( 1) f(zs) ds.

n C, S s-

Hence

I I II sn+l - I III(Snf)(z)lll = 2n C
p

C
,

sn+l(s _ I) f(zs) ds I dz I

I I I I sn+l - 1 I~ 2n C
p

C
,

S _ 1 If(zs)[ I ds II dz I

I I Isn+l 1 III l= h C
,

s - ~ C
p

I f(zs) 11dz I I ds I,

where the change in the order of integration is justified by Fubini's theorem.
The transformation t = zs now gives

I I I sn+l - 1 I III(Snf)(z)lll ~ 2n C
,

S _ I I ds I' C
p

If(t)11 dt I.
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By making the transformation s =c eie (see [2]) we find that

-L Ie, ISl~~~_~ I I ds i Tn'

Hence

and by (1)

Q.E.D.

In [2] it was observed that

4
Tn '"-' 2 log n,

1T

and thus II Sn 111 has the required type of asymptotic behavior. We also note
that T2n is equal to An , the nth Lebesgue constant.

In [2] it was established that

and hence we have an identical bound in L1 to that in L oo •

4. THE CHEBYSHEV SERIES OF THE SECOND KIND AND THE ELLIPSE

The ellipse gp in the w-plane with foci ±1 and semiaxes t(p ± p-1) has the
equation

I w + (w2 - 1)1 (2 I = p,

where p > 1. Hence the mapping

Z = w + (w2 - 1)1/2,

which has the inverse mapping

(3)

(4)

takes l(gp) with [- I, 1] deleted into the open annulus N p : 1 < I Z I < p.
We denote by N: the larger annulus p-1 < I z I < p.

In terms of the complex variables wand z, the Chebyshev polynomials
of degree n, Tn(w) and Un(w), of the first and second kinds, respectively,
may be defined by

(5)

and
(6)
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By making the transformation (4) and setting z = pei8 , it is easy to verify
that

f Um _ 1(11') Un _ 1(11') I 11'2 - 1 !1/2 I d11' I
gp

is equal to

an integral which vanishes for m F n. Hence the polynomials {Uk(11')} are
orthogonal with respect to I 11'2 - 1 1

1/ 2 on the ellipse gp. Moreover, the
mapping H" of any function/in A(gp) on the partial sum of degree n of its
expansion on I(gp) in Chebyshev series of the second kind is a projection.

For f(11') in A(gp), define the function

g(z) = (z - r 1) f(t(z + r 1)),

where z and 11' are related by (3). Then

g(z) = 2(11'2 - 1)1/2 f(11')

(7)

Now, by (7), g is analytic in N: and continuous on N:. Hence applying
Cauchy's integral formulas, g has the Laurent series expansion

00

g(z) = I a"zk,
k=-oo

where

(8)

By (7) it is clear that the coefficients satisfy

for all k,

and in particular ao = o. Hence

00

g(z) = I a,,(z" - r").
k~1

Now, for positive k,

But

(9)

(10)
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and hence from (8) and (10),

J. C. \IASON

I r ()( k _ok dza" == ----;, g Z Z '--.c ) --- .
47Tl,co Z

(II)

Transforming to the w-plane and using the definition (6) of U n- 1(w), (9),
and (11) give

g(z) = 2(w2 - 1)1/2 few) == I a" 2(11'2 -- 1)1/2 Uk- 1(W)
k~1

where

- _1_. r 2(1\'2 - 1)1/2 few) . 2(w2 - 1)1/2 U _ (w) . dW,.
47Ti • <I" k 1 (11'2 - 1)1/2

Hence

where

few) I akUk- 1(W),
k~l

(12)

Also
n+1

(Hnf)(w) = I akUk-1(W)
k~1

(13)

(14)

for the same ak .

Thus the expansion of g(z) in Laurent series on No is exactly 2(11'2 - 1)1/2
times the expansion of few) in Chebyshev series of the second kind on I(~o)'

And precisely the same coefficients ak occur in both expansions, when they
are expressed in forms (9) and (12). We are now ready to prove the results
we require.

THEOREM 4.1. {H,,f} converges to f in the L 1 norm on gI' •

Proof The Laurent series of g(z), analytic in No , and continuous on !V" ,
converges in the L 2 norm on the outside contour Co as a consequence of the
orthogonality of the positive and negative powers of z on Co' Hence the
series converges in the L 1 norm on Co by Lemma 2.1, and

Li~ f Ig(z) - 'f ak(zk - r ") II dz' = O.
CO "-~1

Transforming to the w-plane,
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since
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w + (W2 - 1)1/2
dz = (W2 _ 1)1/2 dw

Hence

and i w + (W2 - 1)1/2 [ = p.

and by (14) the result is proved.

THEOREM 4.2. II B n III ~ An+! , where An is Lebesgue's constant

Proof From (13) and (14),

Now

since the integrand is analytic in [(gp). Hence, by addition,

(15)

f(t)
X (w2 _ 1)1/2 dt.

Since

and

u. (w) = si~(k cos-1 w) = -i sin(k cos-1 w) ,
k-] sm(cos-1 w) (11'2 - 1)1/2

we deduce that

1 1n+1 I f(t)(Bnf)(w) = -----: f L cos k(cos-1 t - cos-1 w)( dt
TTl <p k~l ) (w2 - 1)1/2 .
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]f the summation over k is extended to include k = 0, an analytic function is
added to the integrand, and the integral is unaffected. Thus

where

B = cos-1 t ~ cos-1 W

and the dash denotes that the first term in the summation is halved. Hence

1 I n+~ I I j(t)1 I~ --:;; (( t-o cos kB . I w2 _ 1 11/2 I dt II dw i

1 J IJ In+1 I :dw I I
= --:;; Op Ij(t)! I Op k~: coskB I w2' _ 1111/2 \ I dt [.

Both t and w move on to, and hence both cos-1 t and cos-1 ware of the form

ex - ilog p for some ex in [-7T, 7T].

Thus B takes real values, moving from -7T to 7T as w moves round to for
fixed t. Transforming from w to B,

since

dlV = i(w2 - 1)1/2 dB.

But, by a classical result in Fourier series,

~ fIT II' cos kB IdB = ~ l" Isin(~ ~ })8 IdB,
7T _IT k~O 7T 0 Sill ,'};B

and hence by (15)

The result follows.

5. IMPLICATIONS IN ApPROXIMATION THEORY

On the circle we have now established that the partial sum of the Taylor
series is not only a best approximation in L 2 , but also a near-best approxi-
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mation in both L 1 and Lao . Thus it is a powerful approximation in all three
principal Holder norms.

On the ellipse we now know that the Chebyshev polynomials of the second
kind fulfill a role in near-best L 1 approximation similar to that played by the
Chebyshev polynomials of the first kind in near-best Lao approximation.
Moreover both kinds of Chebyshev polynomials are orthogonal with respect
to appropriate weight functions. Thus the partial sums of the Chebyshev
series of the first and second kinds provide between them powerful approxi
mations in L 1 , L 2 weighted by i w2 - 1 11/2 or I w2 - 1 1~1/2, and Lao .

6. APPLICATIONS TO INDEFINITE INTEGRATION

Suppose that a closed contour r passes through a fixed point Zo and that z

is a general point of r. Let rz denote the portion of r between Zo and z, and
consider the problem of computing the indefinite integral

g(z) = I. f(z) dz
r z

(16)

for all z on r, wherefis a given function in A(T).
If f(z) is replaced by a polynomial approximation fiz) of degree n on r,

then g(z) will be replaced by the polynomial

(17)

of degree n + 1. A constant of integration On , equal to gn+1(zo), is included
for generality. If we define

II g(z) - gn+1(z)!!ao = sup i g(z) - gn+lz)l,
ZEr

then, by analysis similar to that adopted in [6],

II g(z) - gn+1(z)!l oc = II-On + Sr. (f - fn) dz Il
oc

~ I On I + I[ J
rz

(f - j~) dz IIx

~ I On I + II ( II - In I I dz I t
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Thus
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(18)

By Theorems 3.1 and 4.1, we may immediately deduce the following two
results from (18):

THEOREM 6.1. On the circular contour Cp , iffn is chosen to be the partial
sum 8 nf of the Taylor series off, and ifgn+l is defined by (17) for any On such
that I On 1-+ °as n -+ 00, then g"+l converges uniformly to gas n -+ oc.

THEOREM 6.2. On the elliptical contour gp , iffn is chosen to be the partial
sum Hnf of the Chebyshev series of the second kind off, and ifgn+l is defined
by (17)for any On such that I On 1 -+ °as n -+ 00, then gn+l converges uniformly
to g as n -+ 00.

Moreover, by Theorems 3.2 and 4.2, iffn is chosen to be 8n f on Cp and Hnf
on gp , then the bound (18) on the maximum error in the indefinite integral
will be within a relative distance of the order of log n of its minimum value.

However, since the bound (18) on 11 g - gn+1 1100 is very pessimistic, it is not
clear that its minimization will in fact provide a near-minimization of
Ii g - gn+l 1100 . Nevertheless it does. For we can show (as in [6] for the real
line) that the approximations 8 n fand Hnfyield the minimax approximations
gn+l to g on their respective contours if f is a model function, namely a
monic polynomial of degree n + I. In this case, the error f - fn in the
integrand of (16) is also a monic polynomial of degree n + 1, and its integral
g - gn-i-1 is a polynomial of degree n -+ 2 with fixed leading coefficient
(n + 2)-1.

By applying the characterization theorem for minimax polynomial
approximations on contours, established by Rivlin and Shapiro [8], it can be
verified that the zero function is the best nth degree polynomial approximation
to the functions Zn+1 and 2-n Tn+1(w) on Cpand gp, respectively (where we use
the variable w on g,,). The relevant extremal points in these characterizations
are

k=0,1, .... 2n

and

k = 0, 1.... ,211 , I on to .
Suitable extremal signatures are, respectively, the complex signs at the
extremal points of the functions

fL(Z) c= zn; 1

and
on tv,
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where

Thus II g - gn+lILXl is minimized for the model function if

g(z) - gn+l(z) = (n + 2)-1 Zn+2

and

341

(We now revert to z variables on both contours.)
Since g(z) - gn+l(z) = -On when z = zo, the corresponding choices

of constants of integration are

and

But

and

!!- [en -i-- 2)-1 2-1- n T (z)] = 2-1- n U (Z)dz I n+2 n+l .

Thus

fez) - fn{z) = zn+l

and

fez) - j~(z) = 2-1- nun_H (Z) on to'

both of which are monic polynomials of degree n + I. Hence II g - gn+l 1100 is
minimized when we choose 8 nf for fn on Co and H nf for fn on to' and we
have the following results:

THEOREM 6.3. On Co, the minimax polynomial approximation to the
indefinite integral from Zo to z of the model function fez) = Zn+1 is obtained by
integrating the partial sum f..{z) = (8nf)(z) of the Taylor series of f and
choosing as constant of integration on = -en -+- 2)-1 z~~ 2.

THEOREM 6.4. On go, the minimax polynomial approximation to the
indefinite integral from 20 to z of the model function f(z) = zn+l is obtained by
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integrating the partial sum fn(z) (Hnf)(z) of the Chebyshev series of the
second kind off and choosing as constant of integration

If On is chosen to be zero for the model function, the approximation
obtained to g is still very close to minimax. For the error g - gn+l is then

and

on go'

(I 9)

(20)

The polynomial (19) has n + 2 equally spaced zeros on the contour Co, and
(20) has n + 2 corresponding zeros on go' These respective zeros are in fact
precisely the appropriate nodes for near-minimax interpolation on Co
(see [2]) and on go (see [4]).

From the above results for the model function, we expect that in the case
of a general function f in A(T) the approximations obtained by integrating
Snf and H nf on the respective contours are near-minimax.

A simpler process in practice than the determination of Snf and Hnf is to
formfn fromfby interpolating on Co and to at an appropriate set of n + I
points, such as

the zeros of zn+l - z~+l

and

This is essentially a generalization to these two contours of the Clenshaw
Curtis method [9] for numerical integration on the real line.
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